Sequence And Series Question 319

Question: If arithmetic mean of two positive numbers is $ A $ , their geometric mean is $ G $ and harmonic mean is $ H $ , then $ H $ is equal to

[MP PET 2004]

Options:

A) $ 1.2+2.3+3.4+4.5+……… $

B) $ \frac{G}{A^{2}} $

C) $ \frac{A^{2}}{G} $

D) $ \frac{A}{G^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let the positive number $ a_1 $ and $ a_2 $ $ a_1,,A,,a_2 $ ????A.P. then $ A=\frac{a_1+a_2}{2} $ $ G^{2}=AH $ ????.G.P. $ G=\sqrt{a_1a_2} $ $ \frac{1}{a_1},,\frac{1}{H},,\frac{1}{a_2} $ ??..H.P. $ \frac{2}{H}=\frac{1}{a_1}+\frac{1}{a_2} $ ; $ H=\frac{2a_1a_2}{a_1+a_2} $ ; $ H=\frac{G^{2}}{A} $