Sequence And Series Question 321

Question: When $ \frac{1}{a}+\frac{1}{c}+\frac{1}{a-b}+\frac{1}{c-d}=0 $ and $ b\ne a\ne c $ , then $ a,\ b,\ c $ are

[MP PET 2004]

Options:

A) In H.P.

B) In G.P.

C) In A.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

We have $ \frac{1}{a}+\frac{1}{c}+\frac{1}{a-b}+\frac{1}{c-b}=0 $ $ \frac{1}{a}+\frac{1}{c-b}=\frac{1}{b-a}-\frac{1}{c} $
$ \Rightarrow $ $ \frac{c-b+a}{a(c-b)}=\frac{c-b+a}{(b-a)c} $
$ \Rightarrow $ $ ac-ab=bc-ac $
$ \Rightarrow $ $ 2ac=ab+bc $
$ \Rightarrow $ $ \frac{2ac}{a+c}=b $ i.e., $ a,b,c $ are in H.P.