Sequence And Series Question 324

Question: If p,q,r are in G.P and $ {{\tan }^{-1}}p $ , $ {{\tan }^{-1}}q,{{\tan }^{-1}}r $ are in A.P. then p, q, r are satisfies the relation

[DCE 2005]

Options:

A) $ p=q=r $

B) $ p\ne q\ne r $

C) $ p+q=r $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ p,q,r\in G\text{.},P\text{.} $ ,
$ \therefore q^{2}=pr $ Also $ {{\tan }^{-1}}p,{{\tan }^{-1}}q, $ $ {{\tan }^{-1}}r\in $ A.P. Þ $ {{\tan }^{-1}}p+{{\tan }^{-1}}r=2{{\tan }^{-1}}q $
Þ $ p+r=2q\Rightarrow p,q,r $ are in A.P. Now p, q, r are both in A.P and G.P., which is possible only, if $ p=q=r $ .