Sequence And Series Question 324
Question: If p,q,r are in G.P and $ {{\tan }^{-1}}p $ , $ {{\tan }^{-1}}q,{{\tan }^{-1}}r $ are in A.P. then p, q, r are satisfies the relation
[DCE 2005]
Options:
A) $ p=q=r $
B) $ p\ne q\ne r $
C) $ p+q=r $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ p,q,r\in G\text{.},P\text{.} $ ,
$ \therefore q^{2}=pr $  Also  $ {{\tan }^{-1}}p,{{\tan }^{-1}}q, $   $ {{\tan }^{-1}}r\in  $ A.P.
Þ  $ {{\tan }^{-1}}p+{{\tan }^{-1}}r=2{{\tan }^{-1}}q $
Þ  $ p+r=2q\Rightarrow p,q,r $  are in A.P. Now p, q, r are both in A.P and G.P., which is possible only, if  $ p=q=r $ .
 BETA
  BETA 
             
             
           
           
           
          