Sequence And Series Question 325

Question: If A.M and G.M of x and y are in the ratio p : q, then x : y is

[Kerala (Engg.) 2005]

Options:

A) $ p-\sqrt{p^{2}+q^{2}} $ : $ p+\sqrt{p^{2}+q^{2}} $

B) $ p+\sqrt{p^{2}-q^{2}} $ : $ p-\sqrt{p^{2}-q^{2}} $

C) $ p:q $

D) $ p+\sqrt{p^{2}+q^{2}} $ : $ p-\sqrt{p^{2}+q^{2}} $

E) $ q+\sqrt{p^{2}-q^{2}} $ : $ q-\sqrt{p^{2}-q^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{\frac{x+y}{2}}{\sqrt{xy}}=\frac{p}{q} $ $ \frac{x+y}{2(\sqrt{xy})}=\frac{p}{q} $ ?..(i) $ \frac{x^{2}+y^{2}+2xy}{4xy}=\frac{p^{2}}{q^{2}} $ $ \frac{x^{2}+y^{2}+2xy-4xy}{4xy}=\frac{p^{2}-q^{2}}{q^{2}} $ $ \frac{{{(x-y)}^{2}}}{4xy}=\frac{p^{2}-q^{2}}{q^{2}} $ $ \frac{x-y}{2\sqrt{xy}}=\frac{\sqrt{p^{2}-q^{2}}}{q} $ ?..(ii) Equation (i) is divided by (ii), Then $ \frac{x+y}{x-y}=\frac{p}{\sqrt{p^{2}-q^{2}}} $ ; $ \frac{x}{y}=\frac{p+\sqrt{p^{2}-q^{2}}}{p-\sqrt{p^{2}-q^{2}}} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index