Sequence And Series Question 326

Question: If $ a,\ b,\ c $ are in G.P. and $ \log a-\log 2b,\ \log 2b-\log 3c $ and $ \log 3c-\log a $ are in A.P., then $ a,\ b,\ c $ are the length of the sides of a triangle which is

Options:

A) Acute angled

B) Obtuse angled

C) Right angled

D) Equilateral

Show Answer

Answer:

Correct Answer: B

Solution:

As given $ b^{2}=ac $ and $ 2(\log 2b-\log 3c)=\log a-\log 2b+\log 3c-\log a $
$ \Rightarrow $ $ b^{2}=ac $ and $ 2b=3c $
$ \Rightarrow $ $ b=2a/3 $ and $ c=4a/9 $ Since $ a+b=\frac{5a}{3}>c,\ b+c=\frac{10a}{9},>a,\ c+a=\frac{13a}{9}>b $ It implies that $ a,\ b,\ c $ form $ a $ triangle with $ a $ as the greatest side. Now, let us find the greatest angle $ A $ of $ \Delta ABC $ by using the cosine formula. $ \cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}=-\frac{29}{48}<0 $
$ \therefore $ The angle $ A $ is obtuse.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें