Sequence And Series Question 326
Question: If $ a,\ b,\ c $ are in G.P. and $ \log a-\log 2b,\ \log 2b-\log 3c $ and $ \log 3c-\log a $ are in A.P., then $ a,\ b,\ c $ are the length of the sides of a triangle which is
Options:
A) Acute angled
B) Obtuse angled
C) Right angled
D) Equilateral
Show Answer
Answer:
Correct Answer: B
Solution:
As given  $ b^{2}=ac $  and  $ 2(\log 2b-\log 3c)=\log a-\log 2b+\log 3c-\log a $
$ \Rightarrow  $  $ b^{2}=ac $   and   $ 2b=3c $
$ \Rightarrow  $  $ b=2a/3 $ and $ c=4a/9 $   Since  $ a+b=\frac{5a}{3}>c,\ b+c=\frac{10a}{9},>a,\ c+a=\frac{13a}{9}>b $  It implies that  $ a,\ b,\ c $  form  $ a $  triangle with  $ a $  as the greatest side. Now, let us find the greatest angle  $ A $  of  $ \Delta ABC $  by using the cosine formula.  $ \cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}=-\frac{29}{48}<0 $
$ \therefore  $  The angle  $ A $  is obtuse.
 BETA
  BETA 
             
             
           
           
           
          