Sequence And Series Question 327

Question: $ 1+x{\log_{e}}a+\frac{x^{2}}{2,!}{{({\log_{e}}a)}^{2}}+\frac{x^{3}}{3,!}{{({\log_{e}}a)}^{3}}+…= $

[EAMCET 2002]

Options:

A) $ a^{x} $

B) x

C) $ {a^{{\log_{a}}x}} $

D) a

Show Answer

Answer:

Correct Answer: A

Solution:

Series = $ 1+x{\log_{e}}a+\frac{x^{2}}{2!}{{[ {\log_{e}}a ]}^{2}}+\frac{x^{3}}{3!}{{[{\log_{e}}a]}^{3}}+… $ $ ={e^{x{\log_{e}}a}}={e^{{\log_{e}}a^{x}}}=a^{x} $ .