Sequence And Series Question 328

Question: Let $ A_{n} $ be the sum of the first n terms of the geometric series $ 704+\frac{704}{2}+\frac{704}{4}+\frac{704}{8}+…… $ and $ B_{n} $ be the sum of the first n terms of the geometric series $ 1984+\frac{1984}{2}+\frac{1984}{4}+\frac{1984}{8}+…… $ If $ A_{n}=B_{n}, $ then the value of n is (where $ n\in N $ ).

Options:

4

5

6

7

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ A_{n}=704+\frac{704}{2}+\frac{704}{4}+…. $ to n terms $ =\frac{704( 1-{{( \frac{1}{2} )}^{n}} )}{1-\frac{1}{2}}=704\times 2( 1-{{( \frac{1}{2} )}^{n}} ) $ $ B_{n}=1984-\frac{1984}{2}+\frac{1984}{4}…. $ to n terms $ =\frac{1984( 1-{{( \frac{-1}{2} )}^{n}} )}{1-( \frac{-1}{2} )}=1984\times \frac{2}{3}( 1-{{( \frac{-1}{2} )}^{n}} ) $ Now, $ A_{n}=B_{n}\Rightarrow 704\times 2( 1-{{( \frac{1}{2} )}^{n}} ) $ $ =1984\times \frac{2}{3}\times ( 1-{{( \frac{-1}{2} )}^{n}} ) $

$ \Rightarrow 33-31=33{{( \frac{1}{2} )}^{n}}-31{{( \frac{-1}{2} )}^{n}} $

$ \Rightarrow {2^{n+1}}=33-31{{(-1)}^{n}}\Rightarrow n=4 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें