Sequence And Series Question 330

Question: ABC is a right angled triangle in which $ \angle B=90{}^\circ $ and $ BC=a $ . If n points $ L_1,,L_2,….L_{n} $ on AB are such that AB is divided in n + 1 equal parts and $ L_1M_1,L_2M_2,….,L_{n}M_{n} $ are line segments parallel to BC and $ M_1,,M_2,…M_{n} $ are on AC, then the sum of the lengths of $ L_1M_1,L_2M_2,….L_{n}M_{n} $ is

Options:

A) $ \frac{a(n+1)}{2} $

B) $ \frac{a(n-1)}{2} $

C) $ \frac{an}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \frac{AL_1}{AB}=\frac{L_1M_1}{BC} $

$ \therefore \frac{1}{n+1}=\frac{L_1M_1}{a} $

$ \therefore L_1M_1=\frac{a}{n+1}; $ $ \frac{AL_2}{AB}=\frac{L_2M_2}{BC} $

$ \therefore \frac{2}{n+1}=\frac{L_2M_2}{a} $

$ \therefore L_2M_2=\frac{2a}{n+1},, $ etc.

$ \therefore $ The required sum $ =\frac{a}{n+1}+\frac{2a}{n+1}+\frac{3a}{n+1}+ $ $ …+\frac{na}{n+1} $ $ =\frac{a}{n+1}(1+2+….+n)=\frac{a}{n+1}.\frac{n(n+1)}{2}=\frac{an}{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें