Sequence And Series Question 330

Question: ABC is a right angled triangle in which $ \angle B=90{}^\circ $ and $ BC=a $ . If n points $ L_1,,L_2,….L_{n} $ on AB are such that AB is divided in n + 1 equal parts and $ L_1M_1,L_2M_2,….,L_{n}M_{n} $ are line segments parallel to BC and $ M_1,,M_2,…M_{n} $ are on AC, then the sum of the lengths of $ L_1M_1,L_2M_2,….L_{n}M_{n} $ is

Options:

A) $ \frac{a(n+1)}{2} $

B) $ \frac{a(n-1)}{2} $

C) $ \frac{an}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \frac{AL_1}{AB}=\frac{L_1M_1}{BC} $

$ \therefore \frac{1}{n+1}=\frac{L_1M_1}{a} $

$ \therefore L_1M_1=\frac{a}{n+1}; $ $ \frac{AL_2}{AB}=\frac{L_2M_2}{BC} $

$ \therefore \frac{2}{n+1}=\frac{L_2M_2}{a} $

$ \therefore L_2M_2=\frac{2a}{n+1},, $ etc.

$ \therefore $ The required sum $ =\frac{a}{n+1}+\frac{2a}{n+1}+\frac{3a}{n+1}+ $ $ …+\frac{na}{n+1} $ $ =\frac{a}{n+1}(1+2+….+n)=\frac{a}{n+1}.\frac{n(n+1)}{2}=\frac{an}{2} $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index