Sequence And Series Question 339

Question: If $ x{{.}^{\ell n( \frac{y}{z} )}}.{y^{_{^{\ell n{{(XZ)}^{2}}}}}}.,{z^{\ell n( \frac{x}{y} )}}={y^{4,\ell n,y}} $ for any x > 1, y >1 and z > 1, then which one of the following is correct?

Options:

A) $ \ell n,y $ is the GM of $ \ell n,x,,\ell n,x,,\ell n,x $ and $ \ell n,z $

B) $ \ell n,y $ is the AM of $ \ell n,x,,\ell n,x,,\ell n,x $ and $ \ell n,z $

C) $ \ell n,y $ is the HM of $ \ell n,x,,\ell n,x,,\ell n,x $ and $ \ell n,z $

D) $ \ell n,y $ is the AM of $ \ell n,Inx,\ell n,z $ and $ \ell n,z $

Show Answer

Answer:

Correct Answer: B

Solution:

[d] $ {x^{ln( \frac{y}{z} )}}.{y^{ln{{(xz)}^{2}}}}.{z^{ln( \frac{x}{y} )}}={y^{4lny}} $
$ \Rightarrow ln[ {z^{ln( \frac{y}{z} )}} ]+ln,[ {y^{ln{{(xz)}^{2}}}} ]+ln[ {z^{ln( \frac{x}{y} )}} ]=ln[ {y^{4lny}} ] $
$ \Rightarrow [ ln( \frac{y}{z} )ln,x ]+[2ln(xz)lny]+[ ln( \frac{x}{y} )lnz ]=4,{{[lny]}^{2}} $
$ \Rightarrow lnx[lny-lnz]+2lny[lnx+lnz] $ $ +,lnz[lnx-lny]=4{{[lny]}^{2}} $
$ \Rightarrow 3lnx+lnz=4lny $
$ \Rightarrow \frac{lnx+lnx=lnx+lnz}{4}=lny $
$ \therefore $ lny is the AM of lnx, lnx, lnx & lnz.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें