Sequence And Series Question 340

Question: $ \frac{1+\frac{2^{2}}{2,!}+\frac{2^{4}}{3,!}+\frac{2^{6}}{4,!}+…..\infty }{1+\frac{1}{2,!}+\frac{2}{3,!}+\frac{2^{2}}{4,!}+….\infty }= $

Options:

A) $ e^{2} $

B) $ e^{2}-1 $

C) $ {e^{3/2}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{1+\frac{2^{2}}{2\ !}+\frac{2^{4}}{3\ !}+\frac{2^{6}}{4\ !}+….\infty }{1+\frac{1}{2\ !}+\frac{2}{3\ !}+\frac{2^{2}}{4\ !}+…..\infty } $ $ =\frac{\frac{1}{2^{2}}{ \frac{2^{2}}{1\ !}+\frac{{{(2^{2})}^{2}}}{2\ !}+\frac{{{(3^{2})}^{3}}}{3\ !}+…… }}{\frac{1}{2^{2}}{ 2+2+\frac{2^{2}}{2\ !}+\frac{2^{3}}{3\ !}+…… }}=\frac{{e^{(2^{2})}}-1}{1+e^{2}}=e^{2}-1 $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index