Sequence And Series Question 343

Question: If $ (1-p)(1+3x+9x^{2}+27x^{3}+81x^{4}+243x^{5}) $ $ =1-p^{6}, $ $ p\ne 1 $ then the value of $ \frac{p}{x} $ is

Options:

A) $ \frac{1}{3} $

B) 3

C) $ \frac{1}{2} $

D) 2

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ (1-p)(1+3x+9x^{2}+27x^{3}+81x^{4}+243x^{5}) $ $ =1-p^{6} $
$ \Rightarrow (1+3x+9x^{2}+27x^{3}+81x^{4}+243x^{5})=\frac{1-p^{6}}{1-p} $
$ \Rightarrow (1+3x+9x^{2}+27x^{3}+81x^{4}+243x^{5}) $ $ =1+p+p^{2}+p^{3}+p^{4}+p^{5} $ Comparing we get $ p=3x $ or $ p/x=3 $