Sequence And Series Question 344

Question: Given that $ \alpha ,,\gamma $ are root of the equation $ Ax^{2}-4x+1=0 $ . and $ \beta ,,\delta $ the roots of the equation $ Bx^{2}-6x+1=0, $ the values of A and B such that $ \alpha ,\beta ,\gamma $ and $ \delta $ are in H. P. are

Options:

A) A = 3, B = 8

B) A = -3, B = 8

C) A = 3, B = - 8

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \alpha ,\beta ,\gamma $ and $ \delta $ are in H.P.
$ \Rightarrow ,\frac{1}{\alpha },\frac{1}{\beta },\frac{1}{\gamma },\frac{1}{\delta } $ are in A.P. Let d be the common difference of this A.P. Now, $ \alpha .\gamma $ are roots of $ Ax^{2}-4x+1=0 $

$ \therefore \frac{\alpha +\gamma }{\alpha \gamma }=\frac{4/A}{1/A}=4 $ or $ \frac{1}{\alpha }+\frac{1}{\gamma }=4 $ i.e. $ \frac{1}{\alpha }+\frac{1}{\alpha }+2d=4 $ or $ \frac{1}{\alpha }+d=2 $ ?. (i) $ \beta ,\delta $ are roots of $ Bx^{2}-6x+1=0 $

$ \therefore \frac{\beta +\delta }{\beta \delta }=\frac{1}{\beta }+\frac{1}{\delta }=\frac{6/B}{1/B}=6 $ or $ \frac{1}{\alpha }+d+\frac{1}{\alpha }+3d=6 $ $ \frac{1}{\alpha }+2d=3 $ ?. (ii) From (i) and (ii), on solving, we get $ \frac{1}{\alpha }=1,d=1.\therefore ,\frac{1}{\alpha }=1,\frac{1}{\beta }=2,\frac{1}{\gamma }=3,\frac{1}{\delta }=4 $ Since, $ \frac{1}{\alpha \gamma }=A\therefore A=3. $ Also, $ \frac{1}{\beta \delta }=B,\therefore B=8 $ Hence $ A=3 $ and $ B=8 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें