Sequence And Series Question 355
Question: The harmonic mean of two numbers is 4 and the arithmetic and geometric means satisfy the relation $ 2A+G^{2}=27 $ , the numbers are
[MNR 1987; UPSEAT 1999, 2000]
Options:
A) $ 6,,3 $
B) 5, 4
C) $ 5,\ -2.5 $
D) $ -3,\ 1 $
Show Answer
Answer:
Correct Answer: A
Solution:
Let numbers be  $ x $  and  $ y $ . Then  $ A=\frac{1}{2}(x+y),\ \sqrt{xy}=G $  or  $ G^{2}=xy $  and   $ ( \frac{1}{b}+\frac{1}{c}-\frac{1}{a} )( \frac{1}{c}+\frac{1}{a}-\frac{1}{b} ) $ ,
$ \Rightarrow  $  $ G^{2}=4A $  Also,  $ =( \frac{3}{b}-\frac{2}{a} )( \frac{1}{b} )=\frac{3}{b^{2}}-\frac{2}{ab} $
$ \Rightarrow $  $ (\because \ a,\ b,\ c $  So,  $ x+y=9,\ xy=18 $  Hence numbers are 6 and 3.
 BETA
  BETA 
             
             
           
           
           
          