Sequence And Series Question 356

Question: The value of the infinite product $ {6^{\frac{1}{2}}}\times {6^{\frac{1}{2}}}\times {6^{\frac{3}{8}}}\times {6^{\frac{1}{4}}}…. $ is

Options:

A) 6

B) 36

C) 216

D) $ \infty $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ X={6^{( \frac{1}{2}+\frac{1}{2}+\frac{3}{8}+\frac{1}{4}+….. )}} $ $ ={6^{[ ( 1\times \frac{1}{2} )+( 2\times \frac{1}{4} )+( 3\times \frac{1}{8} )+( 4\times \frac{1}{16} )+…… ]}} $ $ \because $ It is arithmetic-geometric progression,
$ \therefore a=\frac{1}{2};,d=1 $ & $ r=\frac{1}{2} $
$ \Rightarrow X={6^{[ \frac{a}{1-r}+\frac{dr}{{{(1-r)}^{2}}} ]}}={6^{[ \frac{\frac{1}{2}}{1-\frac{1}{2}}+\frac{1\times \frac{1}{2}}{{{(1-\frac{1}{2})}^{2}}} ]}}=6^{3}=216 $