Sequence And Series Question 356
The value of the infinite product $ {6^{\frac{1}{2}}}\times {6^{\frac{1}{2}}}\times {6^{\frac{3}{8}}}\times {6^{\frac{1}{4}}}… $ is
Options:
6
36
216
D) $ \infty $
Show Answer
Answer:
Correct Answer: C
Solution:
$ X={6^{( \frac{1}{2}+\frac{1}{2}+\frac{3}{8}+\frac{1}{4}+….. )}} $   $ ={6^{[ ( 1\times \frac{1}{2} )+( 2\times \frac{1}{4} )+( 3\times \frac{1}{8} )+( 4\times \frac{1}{16} )+…… ]}} $   $ \because $  It is a arithmetic-geometric progression
$ \therefore a=\frac{1}{2};,d=1 $  &  $ r=\frac{1}{2} $
$ \Rightarrow X={6^{[ \frac{a}{1-r}+\frac{dr}{{{(1-r)}^{2}}} ]}}={6^{[ \frac{\frac{1}{2}}{1-\frac{1}{2}}+\frac{1\times \frac{1}{2}}{{{(1-\frac{1}{2})}^{2}}} ]}}=6^{3}=216 $
 BETA
  BETA 
             
             
           
           
           
          