Sequence And Series Question 359

Question: If S, P and R are the sum, product and sum of the reciprocals of n terms of an increasing GP respectively and $ S^{n}=R^{n}.P^{k}, $ then k is equal to

Options:

A) 1

B) 2

C) 3

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ S=\frac{a(1-r^{n})}{1-r},P=a^{n}.{r^{\frac{n(n-1)}{2}}} $ $ R=\frac{1}{a}+\frac{1}{ar}+\frac{1}{ar^{2}}+…..nterms=\frac{1-r^{n}}{a(1-r){r^{n-1}}} $ $ S^{n}=R^{n}P^{k}\Rightarrow {{( \frac{S}{R} )}^{n}}=P^{k} $
$ \Rightarrow {{(a^{2},{r^{n-1}})}^{n}}=P^{k}\Rightarrow P^{2}=P^{k}\Rightarrow k=2 $