Sequence And Series Question 364

Question: If $ a_1,\ a_2,…………,a_{n} $ are in A.P. with common difference , $ d $ , then the sum of the following series is $ \sin d(\cos ec,a_1.cosec,a_2+cosec,a_2.cosec,a_3+……….. $ $ +cosec\ {a_{n-1}}cosec\ a_{n}) $

[RPET 2000]

Options:

A) $ \sec a_1-\sec a_{n} $

B) $ \cot a_1-\cot a_{n} $

C) $ \tan a_1-\tan a_{n} $

D) $ cosec\ a_1-cosec\ a_{n} $

Show Answer

Answer:

Correct Answer: B

Solution:

As given $ d=a_2-a_1=a_3-a_2=….=a_{n}-{a_{n-1}} $
$ \therefore $ $ \sin d,{cosec\ a_1cosec\ a_2+…..+cosec\ {a_{n-1}}cosec\ a_{n}} $ $ =\frac{\sin (a_2-a_1)}{\sin a_1.\ \sin a_2}+……+\frac{\sin (a_{n}-{a_{n-1}})}{\sin {a_{n-1}}\sin a_{n}} $ $ =(\cot a_1-\cot a_2)+(\cot a_2-\cot a_3)+…. $ $ +(\cot {a_{n-1}}-\cot a_{n}) $ $ =\cot a_1-\cot a_{n} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें