Sequence And Series Question 370

Question: If $ S_{n}= $ $ (1+{3^{-1}})(1+{3^{-2}})(1+{3^{-4}})(1+{3^{-8}})….(1+{3^{-2^{n}}}), $ then $ {S_{\infty }} $ is equal to

Options:

A) 1

B) $ \frac{1}{2} $

C) $ \frac{3}{2} $

D) None

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ S_{n}=(1+{3^{-1}})(1+{3^{-2}})(1+{3^{-4}})(1+{3^{-4}})….(1+{3^{-2n}}) $

$ \Rightarrow (1-{3^{-1}})S_{n} $ $ =(1-{3^{-1}})(1+{3^{-1}})(1+{3^{-2}})(1+{3^{-4}})(1+{3^{-8}})….(1+{3^{-2^{n}}}) $

$ \Rightarrow \frac{2}{3}S_{n}=(1-{3^{-2}})(1+{3^{-2}})(1+{3^{-4}})(1+{3^{-8}})….(1+{3^{-2n}}) $ $ =(1-{3^{-4}})(1+{3^{-4}})(1+{3^{-8}})….(1+{3^{-2^{n}}}) $ $ =(1-{3^{-8}})(1+{3^{-8}})….(1+{3^{-2^{n}}}) $ $ =(1-{3^{-2^{n}}})(1+{3^{-2^{n}}})=1-{{({3^{-2^{n}}})}^{2}}=1-{3^{-{2^{n+1}}}} $

$ \Rightarrow S_{n}=\frac{3}{2}(1-{3^{-{2^{n+1}}}}) $

$ \therefore {S_{\infty }}=\frac{3}{2}(1-0)=\frac{3}{2} $