Sequence And Series Question 372

Question: What is the sum of the series $ 1+\frac{1}{8}+\frac{1.3}{8.16}+\frac{1.3.5}{8.16.24}+….\infty $ ?

Options:

A) $ \frac{2}{\sqrt{3}} $

B) $ 2\sqrt{3} $

C) $ \frac{\sqrt{3}}{2} $

D) $ \frac{1}{2\sqrt{3}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] As given the series is $ S=1+\frac{1}{8}+\frac{1.3}{8.16}+\frac{1.3.5}{8.1.624}+…..\infty $ On comparing this series with $ S={{(1+x)}^{n}}=1+nx+\frac{n(n-1)}{2!}x^{2}+….\infty , $ We get $ nx=\frac{1}{8}….(1) $ and $ \frac{n(n-1)}{2!}x^{2}=\frac{1.3}{8.16}…(2) $ From Eqs. (1) and (2), we get $ \frac{\frac{n(n-1)}{2!}x^{2}}{n^{2}x^{2}}=\frac{\frac{1.3}{8.16}}{\frac{1}{8}.\frac{1}{8}} $

$ \Rightarrow \frac{n-1}{2n}=\frac{3}{2} $

$ \Rightarrow n-1=3n $

$ \Rightarrow n=-\frac{1}{2} $ On putting this value in Eq. (i)

$ \Rightarrow ( -\frac{1}{2} )x=\frac{1}{8} $

$ \Rightarrow x=-\frac{1}{4} $ . But $ S={{(1+x)}^{n}}={{( 1-\frac{1}{4} )}^{-1/2}} $ $ ={{( \frac{3}{4} )}^{-1/2}}=\frac{2}{\sqrt{3}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें