Sequence And Series Question 375

Question: ABCD is a square of lengths $ a,,a\in N,a>1 $ . Let $ L_1,L_2,L_3,… $ be points BC such that $ BL_1=L_1L_2=L_2L_3=…=1 $ and $ M_1,M_2,M_3,… $ be points on CD such that $ CM_1=M_1M_2=M_2M_3=…=1 $ . Then, $ \sum\limits_{n=1}^{a-1}{(AL_n^{2}+L_{n}M_n^{2})} $ is equal to

Options:

A) $ \frac{1}{2}a{{(a-1)}^{2}} $

B) $ \frac{1}{2}a(a-1)(4a-1) $

C) $ \frac{1}{2}(a-1)(2a-1)(4a-1) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \begin{aligned} & AL_1^{2}+L_1M_1^{2}=(a^{2}+1^{2})+{{{(a-1)}^{2}}+1^{2}} \\ & AL_2^{2}+L_2M_2^{2}=(a^{2}+2^{2})+{{{(a-2)}^{2}}+2^{2}} \\ & ……………………………………………………………… \\ & AL_{a-1}^{2}+{L_{a-1}}M_{a-1}^{2}=a^{2}+{{(a-1)}^{2}}+{1^{2}+{{(a-1)}^{2}}} \\ \end{aligned} $

$ \therefore $ The required sum $ =(a-1)a^{2}+{1^{2}+2^{2}+…+{{(a-1)}^{2}}} $ $ +2{1^{2}+2^{2}+….+{{(a-1)}^{2}}} $ $ =(a-1)a^{2}+3.\frac{(a-1)a(2a-1)}{6} $ $ =a(a-1){ a+\frac{2a-1}{2} }=\frac{a(a-1)(4a-1)}{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें