Sequence And Series Question 380

Question: If the sum of the series $ 2+5+8+11………… $ is 60100, then the number of terms are

[MNR 1991; DCE 2001]

Options:

100

200

150

250

Show Answer

Answer:

Correct Answer: B

Solution:

Series,
$ \Rightarrow $ $ a(1-r)=12r $ and let number of terms is $ n $ then sum of G.P. $ a_1+a_5+a_{10}+a_{15}+a_{20}+a_{24}=225 $ $ \Rightarrow $ $ 60100=\frac{n}{2}{ 2\times 2+(n-1)3 } $
$ \Rightarrow $ $ 120200=n(3n+1) $
$ \Rightarrow $ $ 3n^{2}+n-120200=0 $
$ \Rightarrow $ $ (n-200)(3n+601)=0 $ Hence $ n=200 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें