Sequence And Series Question 386

Question: If a, b, c are in GP., then

Options:

A) $ a^{2},b^{2},c^{2} $ are in GP.

B) $ a^{2}(b+c),c^{2}(a+b),b^{2}(a+c) $ are in G.P.

C) $ \frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b} $ are in G.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \because $ a, b, c are in GP.
$ \therefore \frac{b}{a}=\frac{c}{b}=r\Rightarrow \frac{b^{2}}{a^{2}}=\frac{c^{2}}{b^{2}}=r^{2} $
$ \Rightarrow a^{2},{b^{2,}}c^{2} $ are in GP.