Sequence And Series Question 388

Question: The sum of the series $ \frac{2}{3}+\frac{8}{9}+\frac{26}{27}+\frac{80}{81}+….n $ terms is:

Options:

A) $ n-\frac{1}{2}(3^{n}-1) $

B) $ n+\frac{1}{2}(3^{n}-1) $

C) $ n-\frac{1}{2}(1-{3^{-n}}) $

D) $ n+\frac{1}{2}({3^{-n}}-1) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Taking the sequence $ 3,9,27,81,….. $ Its nth term $ =3,{{(3)}^{n-1}}=3^{n} $ Also take the sequence $ 2,8,26,80….. $ or $ (3-1), $ $ (9-1),,(27-1),(81-1),…… $ Its nth term $ =3^{n}-1 $ Hence, nth term of the sequence $ \frac{2}{3}+\frac{8}{9}+\frac{26}{27}+\frac{80}{81}+……. $ is $ \frac{3^{n}-1}{3^{n}} $ or $ 1-{3^{-n}} $ Now the sum $ (S_{n})=\Sigma (1-{3^{-n}}) $ $ =n-({3^{-1}}+{3^{-2}}+….+{3^{-n}}) $ $ =n-\frac{{3^{-1}}{1-{{({3^{-1}})}^{n}}}}{1-{3^{-1}}}=n-\frac{1}{2}(1-{3^{-n}}) $ $ =n+\frac{1}{2}({3^{-n}}-1). $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें