Sequence And Series Question 39

Question: $ ( \frac{a-b}{a} )+\frac{1}{2}{{( \frac{a-b}{a} )}^{2}}+\frac{1}{3},{{( \frac{a-b}{a} )}^{3}}+…..= $

[MNR 1979; MP PET 1990; UPSEAT 2001, 02; AMU 2005]

Options:

A) $ {\log_{e}}(a-b) $

B) $ {\log_{e}}( \frac{a}{b} ) $

C) $ {\log_{e}}( \frac{b}{a} ) $

D) $ {e^{( \frac{a-b}{a} )}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ ( \frac{a-b}{a} )+\frac{1}{2}{{( \frac{a-b}{a} )}^{2}}+\frac{1}{3}{{( \frac{a-b}{a} )}^{3}}+…… $ $ =-{\log_{e}}( 1-\frac{a-b}{a} )=-{\log_{e}}( \frac{b}{a} )={\log_{e}}( \frac{a}{b} ) $ .