Sequence And Series Question 390

Question: The sum of infinite terms of the following series $ 1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+……… $ will be

[MP PET 1981; RPET 1997; Roorkee 1992; DCE 1996, 2000]

Options:

A) $ \frac{3}{16} $

B) $ \frac{35}{8} $

C) $ \frac{35}{4} $

D) $ \frac{35}{16} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let the sum to infinity of the arithmetico-geometric series be $ S=1+4.\frac{1}{5}+7.\frac{1}{5^{2}}+10.\frac{1}{5^{3}}+…….. $
$ \Rightarrow $ $ \frac{1}{5}S=\frac{1}{5}+4.\frac{1}{5^{2}}+7.\frac{1}{5^{3}}+……… $ Subtracting $ ( 1-\frac{1}{5} )S=1+3.\frac{1}{5}+3.\frac{1}{5^{2}}+3.\frac{1}{5^{3}}+…….. $ $ =1+3( \frac{1}{5}+\frac{1}{5^{2}}+…… ) $
$ \Rightarrow $ $ \frac{4}{5}.S=1+3.\frac{1}{5}( \frac{1}{1-\frac{1}{5}} )=1+\frac{3}{4}=\frac{7}{4}\Rightarrow S=\frac{35}{16} $ . Aliter : Use direct formula $ {S_{\infty }}=\frac{ab}{1-r}+\frac{dbr}{{{(1-r)}^{2}}} $ Here $ a=1,\ b=1,\ d=3,\ r=\frac{1}{5} $ , therefore $ {S_{\infty }}=\frac{1}{1-\frac{1}{5}}+\frac{3\times 1\times \frac{1}{5}}{{{( 1-\frac{1}{5} )}^{2}}}=\frac{5}{4}+\frac{\frac{3}{5}}{\frac{16}{25}}=\frac{5}{4}+\frac{15}{16}=\frac{35}{16} $ . Aliter : Use $ S=[ 1+\frac{r}{1-r}\times diff\text{.}\ of\ A\text{.P}\text{.} ]\frac{1}{1-r} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें