Sequence And Series Question 395

Question: If the A.M. and G.M. of roots of a quadratic equations are 8 and 5 respectively, then the quadratic equation will be

[Pb. CET 1990]

Options:

A) $ x^{2}-16x-25=0 $

B) $ x^{2}-8x+5=0 $

C) $ x^{2}-16x+25=0 $

D) $ x^{2}+16x-25=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Given that $ A.M.=8 $ and $ G.M.=5 $ , if $ \alpha ,\ \beta $ are roots of quadratic equation, then quadratic equation is $ x^{2}-x(\alpha +\beta )+\alpha \beta =0 $ ……(i) $ A.M.=\frac{\alpha +\beta }{2}=8 $
$ \Rightarrow $ $ \alpha +\beta =16 $ ……(ii) and $ G.M.=\sqrt{\alpha \beta }=5 $
$ \Rightarrow $ $ \alpha \beta =25 $ ……(iii) So the required quadratic equation will be $ x^{2}-16x+25=0 $ .