Sequence And Series Question 395
Question: If the A.M. and G.M. of roots of a quadratic equations are 8 and 5 respectively, then the quadratic equation will be
[Pb. CET 1990]
Options:
A) $ x^{2}-16x-25=0 $
B) $ x^{2}-8x+5=0 $
C) $ x^{2}-16x+25=0 $
D) $ x^{2}+16x-25=0 $
Show Answer
Answer:
Correct Answer: C
Solution:
Given that  $ A.M.=8 $  and  $ G.M.=5 $ , if  $ \alpha ,\ \beta  $  are roots of quadratic equation, then quadratic equation is  $ x^{2}-x(\alpha +\beta )+\alpha \beta =0 $              ……(i)  $ A.M.=\frac{\alpha +\beta }{2}=8 $
$ \Rightarrow  $  $ \alpha +\beta =16 $       ……(ii) and  $ G.M.=\sqrt{\alpha \beta }=5 $
$ \Rightarrow  $  $ \alpha \beta =25 $       ……(iii) So the required quadratic equation will be  $ x^{2}-16x+25=0 $ .
 BETA
  BETA 
             
             
           
           
           
          