Sequence And Series Question 40

Question: $ \frac{(a-1)-\frac{{{(a-1)}^{2}}}{2}+\frac{{{(a-1)}^{3}}}{3}-….\infty }{(b-1)-\frac{{{(b-1)}^{2}}}{2}+\frac{{{(b-1)}^{3}}}{3}-…..\infty }= $

Options:

A) $ {\log_{b}}a $

B) $ {\log_{a}}b $

C) $ {\log_{e}}a-{\log_{e}}b $

D) $ {\log_{e}}a+{\log_{e}}b $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{(a-1)-\frac{{{(a-1)}^{2}}}{2}+\frac{{{(a-1)}^{3}}}{3}-…….\infty }{(b-1)-\frac{{{(b-1)}^{2}}}{2}+\frac{{{(b-1)}^{3}}}{3}-……\infty } $ $ =\frac{{\log_{e}}(1+\overline{a-1})}{{\log_{e}}(1+\overline{b-1})}=\frac{{\log_{e}}a}{{\log_{e}}b}={\log_{b}}a $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index