Sequence And Series Question 401

Question: $ \frac{2}{3,!}+\frac{4}{5,!}+\frac{6}{7,!}+……\infty = $

[MNR 1979; MP PET 1995, 2002; Pb. CET 2002]

Options:

A) $ e $

B) $ 2,e $

C) $ e^{2} $

D) $ 1/e $

Show Answer

Answer:

Correct Answer: D

Solution:

$ S=\frac{2}{3\ !}+\frac{4}{5\ !}+\frac{6}{7\ !}+……+\frac{2n}{(2n+1)\ !}+…… $ Here $ T_{n}=\frac{(2n+1)-1}{(2n+1)\ !}=\frac{1}{(2n)\ !}-\frac{1}{(2n+1)\ !} $
$ \Rightarrow S=\sum\limits_{n=1}^{\infty }{T_{n}}=( \frac{1}{2\ !}+\frac{1}{4\ !}+\frac{1}{6\ !}+… ) $ $ -( \frac{1}{3\ !}+\frac{1}{5\ !}+\frac{1}{7\ !}+….. ) $ $ =( \frac{e+{e^{-1}}}{2}-1 )-( \frac{e-{e^{-1}}}{2}-1 )={e^{-1}}=\frac{1}{e} $ .