Sequence And Series Question 405

Question: If the roots of the equation $ x^{3}-12x^{2}+39x-28=0 $ are in A.P., then their common difference will be:

Options:

A) $ \pm 1 $

B) $ \pm 2 $

C) $ \pm 3 $

D) $ \pm 4 $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Roots of Given equation $ x^{3}-12x^{2}+39x-28=0 $ are in A.P. Let $ \alpha -\beta , $ $ \alpha , $ $ \alpha +\beta $ be the roots of the equation. Sum of the roots $ =\alpha -\beta +\alpha +\alpha +\beta =\frac{-(-12)}{1}=12 $ $ 3\alpha =12\Rightarrow \alpha =4 $ and $ (\alpha -\beta )\alpha +\alpha (\alpha +\beta )+(\alpha +\beta )(\alpha -\beta )=39 $

$ \Rightarrow {{\alpha }^{2}}-\alpha \beta +{{\alpha }^{2}}+\alpha \beta +{{\alpha }^{2}}-{{\beta }^{2}}=39 $

$ \Rightarrow 3{{\alpha }^{2}}-{{\beta }^{2}}=39\Rightarrow 3{{(4)}^{2}}-{{\beta }^{2}}=39 $

$ \Rightarrow ,48-{{\beta }^{2}}=39\Rightarrow -{{\beta }^{2}}=39-48\Rightarrow -{{\beta }^{2}}=-9 $

$ \Rightarrow ,\beta =\pm 3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें