Sequence And Series Question 411

Question: Let a, b, c be in AP.

Consider the following statements:

  1. $ \frac{1}{ab},\frac{1}{ca} $ and $ \frac{1}{bc} $ are in A.P.
  2. $ \frac{1}{\sqrt{b}+\sqrt{c}},\frac{1}{\sqrt{c}+\sqrt{a}} $ and $ \frac{1}{\sqrt{a}+\sqrt{b}} $ are in A.P. Which of the statements given above is/are correct?

Options:

A) 1 only

B) 2 only

C) Both 1 and 2

D) Neither 1 and 2

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let $ \frac{1}{ab},\frac{1}{ca},\frac{1}{bc} $ are in AP.

$ \Rightarrow ,\frac{1}{ca}-\frac{1}{ab}=\frac{1}{bc}-\frac{1}{ca} $

$ \Rightarrow \frac{1}{a}( \frac{1}{c}-\frac{1}{b} )=\frac{1}{c}( \frac{1}{b}-\frac{1}{a} ) $

$ \Rightarrow \frac{b-c}{abc}=\frac{a-b}{abc} $

$ \Rightarrow b-c=a-b\Rightarrow 2b=a+c $

$ \Rightarrow $ a, b, c are in AP. Which is true Now, $ \frac{1}{\sqrt{b}+\sqrt{c}},\frac{1}{\sqrt{c}+\sqrt{a}},\frac{1}{\sqrt{a}+\sqrt{b}} $ are in A.P.

$ \therefore ,\frac{2}{\sqrt{c}+\sqrt{a}}=\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{a}+\sqrt{b}} $

$ \Rightarrow ,2( \sqrt{b}+\sqrt{c} )( \sqrt{a}+\sqrt{b} ) $ $ =( \sqrt{c}+\sqrt{a} )( \sqrt{a}+2\sqrt{b}+\sqrt{c} ) $

$ \Rightarrow ,2( \sqrt{ab}+b+\sqrt{ac}+\sqrt{bc} ) $ $ =\sqrt{ac}+2\sqrt{bc}+c+a+2\sqrt{ab}+\sqrt{ac} $

$ \Rightarrow 2\sqrt{ab}+2b+2\sqrt{ac}+2\sqrt{bc} $ $ =2\sqrt{ac}+2\sqrt{bc}+2\sqrt{ab}+c+a $

$ \Rightarrow 2b=a+c $

$ \Rightarrow $ a, b, c are in A.P. Which is true. Hence, both the statements are correct.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें