Sequence And Series Question 416

Question: If the sum to infinity of the series, $ 1+4x+7x^{2}+10x^{3}+…….., $ is 35/16, where $ | x |<1 $ , then x equals to

Options:

A) 19/7

B) 1/5

C) ΒΌ

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ S=1+4x+7x^{2}+10x^{3}+…….. $ $ x.S=x+4x^{2}+7x^{3}+……. $ Subtract $ S(1-x)=1+3x+3x^{2}+3x^{3}+…… $ $ S(1-x)=1+3x( \frac{1}{1-x} ), $ $ \because ,|x|<1 $ $ S=\frac{1+2x}{{{(1-x)}^{2}}} $ Given: $ \frac{1+2x}{{{(1-x)}^{2}}}=\frac{35}{16} $
$ \Rightarrow ,16+32x=35+35x^{2}-70x,\Rightarrow ,x=\frac{1}{5},\frac{19}{7} $ But $ |x|<1, $
$ \therefore x=1/5 $



sathee Ask SATHEE