Sequence And Series Question 418

Question: If the nth term of an arithmetic progression is $ 3n+7 $ , then what is the sum of its first 50 terms?

Options:

A) 3925

B) 4100

C) 4175

D) 8200

Show Answer

Answer:

Correct Answer: C

Solution:

[c] As given. $ n^{th} $ term is : $ T_{n}=3n+7 $ Sum of n term, $ S_{n}=\sum{T_{n}} $ $ =\sum{(3n+7)=3\sum{n+7}\sum{1}} $ $ =\frac{3n(n+1)}{2}+7n=n[ \frac{3n+3+14}{2} ] $ $ =n[ \frac{3n+17}{2} ] $ Sum of 50 terms $ =S_{50}=50[ \frac{3\times 50+17}{2} ] $ $ =50[ \frac{167}{2} ]=25\times 167=4175 $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index