Sequence And Series Question 428

Question: Which one of the following options is correct?

Options:

A) $ sin^{2}30{}^\circ ,sin^{2}45{}^\circ ,sin^{2}60{}^\circ $ are in GP

B) $ cos^{2}30{}^\circ ,cos^{2}45{}^\circ ,cos^{2}60{}^\circ $ are in GP

C) $ cot^{2}30{}^\circ ,cot^{2}45{}^\circ ,cot^{2}60{}^\circ $ are in GP

D) $ tan^{2}30{}^\circ ,tan^{2}45{}^\circ ,tan^{2}60{}^\circ $ are in GP

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Three numbers a. b and c will be in GP. if $ b^{2}=ac $ . Only option [d] i.e. $ {{\tan }^{2}}30{}^\circ ,{{\tan }^{2}}45{}^\circ $ and $ {{\tan }^{2}}60{}^\circ $ are in GP. $ \because {{\tan }^{2}}30{}^\circ =\frac{1}{3} $ $ {{\tan }^{2}}45{}^\circ =1 $ and $ {{\tan }^{2}}60{}^\circ =3 $
$ \therefore ,{{\tan }^{2}}30{}^\circ ,{{\tan }^{2}}45{}^\circ $ and $ {{\tan }^{2}}60{}^\circ $ are in GP.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें