Sequence And Series Question 429
Question: a, b, c are three distinct real numbers and they are in a GP. if a + b + c = xb, then
Options:
A) $ x\le -1orx\ge 3 $
B) $ x<-1orx>3 $
C) $ x\le -1orx>3 $
D) $ x<-3orx>2 $
Show Answer
Answer:
Correct Answer: B
Solution:
[b] Let  $ b=ar $  and  $ c=ar^{2}, $  so that a, b, c are in GP.
$ \therefore a+b+c=xb $
$ \Rightarrow ,a+ar+ar^{2}=x.ar\Rightarrow ,r^{2}+(1-x)r+1=0 $   ? (1) If r is real, then discriminant of  $ (1)\ge 0 $
$ \Rightarrow ,{{(1-x)}^{2}}-4.1.1\ge 0\Rightarrow x^{2}-2x-3\ge 0 $
$ \Rightarrow ,(x+1)(x-3)\ge 0\Rightarrow x\le -1 $  or  $ x\ge 3. $  Now for  $ x=3 $  we get  $ r=1, $  which will make  $ a=b=c $  Also for  $ x=-1, $  we get  $ r=-1, $  for which  $ a=c, $  thus  $ x<-1 $  or  $ x>3 $
 BETA
  BETA 
             
             
           
           
           
          