Sequence And Series Question 429

Question: a, b, c are three distinct real numbers and they are in a GP. if a + b + c = xb, then

Options:

A) $ x\le -1orx\ge 3 $

B) $ x<-1orx>3 $

C) $ x\le -1orx>3 $

D) $ x<-3orx>2 $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let $ b=ar $ and $ c=ar^{2}, $ so that a, b, c are in GP.
$ \therefore a+b+c=xb $
$ \Rightarrow ,a+ar+ar^{2}=x.ar\Rightarrow ,r^{2}+(1-x)r+1=0 $ ? (1) If r is real, then discriminant of $ (1)\ge 0 $
$ \Rightarrow ,{{(1-x)}^{2}}-4.1.1\ge 0\Rightarrow x^{2}-2x-3\ge 0 $
$ \Rightarrow ,(x+1)(x-3)\ge 0\Rightarrow x\le -1 $ or $ x\ge 3. $ Now for $ x=3 $ we get $ r=1, $ which will make $ a=b=c $ Also for $ x=-1, $ we get $ r=-1, $ for which $ a=c, $ thus $ x<-1 $ or $ x>3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें