Sequence And Series Question 439

Question: The sum of $ \frac{\frac{1}{2}.\frac{2}{2}}{1^{3}}+\frac{\frac{2}{2}.\frac{3}{2}}{1^{3}+2^{3}}+\frac{\frac{3}{2}.\frac{4}{2}}{1^{3}+2^{3}+3^{3}}+….. $ upto n terms is equal to

Options:

A) $ \frac{n-1}{n} $

B) $ \frac{n}{n+1} $

C) $ \frac{n+1}{n+2} $

D) $ \frac{n+1}{n} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] The general term is $ T_{n}=\frac{\frac{n}{2}.\frac{n+1}{2}}{1^{3}+2^{3}+3^{3}+….+n^{3}}=\frac{1}{n(n+1)} $ $ =\frac{1}{n}-\frac{1}{n+1} $
$ \therefore S_{n}=1-\frac{1}{n+1}=\frac{n}{n+1} $