Sequence And Series Question 459

Question: In a, GP. of 3n terms, $ S_1 $ denotes the sum of first n terms, $ S_2 $ the sum of the second block of n terms and $ S_3 $ the sum of last n terms. Then $ S_1,S_2,S_3, $ are in

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let the 3n terms of GP. be $ a,ar,ar^{2},…..a{r^{n-1}},ar^{n},a{r^{n+1}},…a{r^{2n-1}},ar^{2n},a{r^{2n+1}},….., $ $ a{r^{3n-1}} $ . Then $ S_1=a+ar+ar^{2}+……+a{r^{n-1}}=\frac{a(1-r^{n})}{1-r} $ $ S_2=ar^{n}+a{r^{n+1}}+…..+a{r^{2n-1}}=\frac{ar^{n}(1-r^{n})}{1-r} $ $ S_3=ar^{2n}+a{r^{2n+1}}+…..+a{r^{3n-1}}=\frac{ar^{2n}(1-r^{n})}{1-r} $ Clearly $ \frac{S_2}{S_1}=\frac{S_3}{S_2}=r^{n} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें