Sequence And Series Question 473

Question: The sum of an infinite geometric series is 2 and the sum of the geometric series made from the cubes of this infinite series is 24. Then the series is

Options:

A) $ 3+\frac{3}{2}-\frac{3}{4}+\frac{3}{8}-…. $

B) $ 3+\frac{3}{2}-\frac{3}{4}+\frac{3}{8}+…. $

C) $ 3-\frac{3}{2}+\frac{3}{4}-\frac{3}{8}+…. $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let first term = a, common ratio = r, where $ -1<r<1 $ Then, $ \frac{a}{1-r}=2 $ and $ \frac{a^{3}}{1-r^{3}}=24 $
$ \therefore ,\frac{1-r^{3}}{{{(1-r)}^{3}}}=\frac{1}{3} $ i.e $ 1-2r+r^{2}=3(1+r+r^{2}) $ or $ 2r^{2}+5r+2=0 $
$ \therefore ,r=-2 $ or $ \frac{-1}{2} $ As $ -1<r<1 $
$ \therefore $ we have $ r=-\frac{1}{2} $
$ \therefore $ The series is $ 3-\frac{3}{2}+\frac{3}{4}-\frac{3}{8}+… $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें