Sequence And Series Question 473
Question: The sum of an infinite geometric series is 2 and the sum of the geometric series made from the cubes of this infinite series is 24. Then the series is
Options:
A) $ 3+\frac{3}{2}-\frac{3}{4}+\frac{3}{8}-…. $
B) $ 3+\frac{3}{2}-\frac{3}{4}+\frac{3}{8}+…. $
C) $ 3-\frac{3}{2}+\frac{3}{4}-\frac{3}{8}+…. $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
[c] Let first term = a, common ratio = r, where  $ -1<r<1 $  Then,  $ \frac{a}{1-r}=2 $  and  $ \frac{a^{3}}{1-r^{3}}=24 $
$ \therefore ,\frac{1-r^{3}}{{{(1-r)}^{3}}}=\frac{1}{3} $  i.e   $ 1-2r+r^{2}=3(1+r+r^{2}) $  or   $ 2r^{2}+5r+2=0 $
$ \therefore ,r=-2 $   or  $ \frac{-1}{2} $   As  $ -1<r<1 $
$ \therefore  $   we have  $ r=-\frac{1}{2} $
$ \therefore  $  The series is  $ 3-\frac{3}{2}+\frac{3}{4}-\frac{3}{8}+… $
 BETA
  BETA 
             
             
           
           
           
          