Sequence And Series Question 484

Question: The ratio of sum of $ m $ and $ n $ terms of an A.P. is $ m^{2}:n^{2} $ , then the ratio of $ m^{th} $ and $ n^{th} $ term will be

[Roorkee 1963; MP PET 1995; Pb. CET 2001]

Options:

A) $ \frac{m-1}{n-1} $

B) $ \frac{n-1}{m-1} $

C) $ \frac{2m-1}{2n-1} $

D) $ \frac{2n-1}{2m-1} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given that $ \frac{\frac{m}{2}[2a+(m-1)d]}{\frac{n}{2}[2a+(n-1)d]}=\frac{m^{2}}{n^{2}} $
$ \Rightarrow $ $ \frac{2a+(m-1)d}{2a+(n-1)d}=\frac{m}{n} $
$ \Rightarrow $ $ \frac{a+\frac{1}{2}(m-1)d}{a+\frac{1}{2}(n-1)d}=\frac{m}{n} $
$ \Rightarrow $ $ an+\frac{1}{2}(m-1)nd=am+\frac{1}{2}(n-1)md $
$ \Rightarrow $ $ i.e. $
$ \Rightarrow $ $ a(n-m)+\frac{d}{2}(m-n)=0 $
$ \Rightarrow $ $ a=\frac{d}{2} $ or $ d=2a $ So, required ratio, $ \frac{T_{m}}{T_{n}}=\frac{a+(m-1)d}{a+(n-1)d}=\frac{a+(m-1)2a}{a+(n-1)2a} $ $ =\frac{1+2m-2}{1+2n-2}=\frac{2m-1}{2n-1} $ . Trick: Replace $ m $ by $ 2m-1 $ and $ n $ by $ 2n-1 $ . Obviously if $ S_{m} $ is of degree 2, then $ T_{m} $ is of $ a $ $ i.e. $ linear.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें