Sequence And Series Question 485

Question: The value of $ \sum\limits_{r=1}^{n}{\log ( \frac{a^{r}}{{b^{r-1}}} )} $ is

Options:

A) $ \frac{n}{2}\log ( \frac{a^{n}}{b^{n}} ) $

B) $ \frac{n}{2}\log ( \frac{{a^{n+1}}}{b^{n}} ) $

C) $ \frac{n}{2}\log ( \frac{{a^{n+1}}}{{b^{n-1}}} ) $

D) $ \frac{n}{2}\log ( \frac{{a^{n+1}}}{{b^{n+1}}} ) $

Show Answer

Answer:

Correct Answer: C

Solution:

The given series is $ \log a+\log ( \frac{a^{2}}{b} )+\log ( \frac{a^{3}}{b^{2}} )+\log ( \frac{a^{4}}{b^{3}} )+……+\log ( \frac{a^{n}}{{b^{n-1}}} ) $ This is an A.P. with first term and the common difference $ \log ( \frac{a^{2}}{b} )-\log a=\log ( \frac{a}{b} ) $ Therefore the sum of terms is $ \frac{n}{2}[ \log a+\log ( \frac{a^{n}}{{b^{n-1}}} ) ]=\frac{n}{2}\log ( \frac{{a^{n+1}}}{{b^{n-1}}} ) $ . Trick: Check for.