Sequence And Series Question 49

Question: If $ a,\ b,\ c $ are in A.P., then $ \frac{{{(a-c)}^{2}}}{(b^{2}-ac)}= $

[Roorkee 1975]

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: D

Solution:

If $ a,\ b,\ c $ are in A.P.
$ \Rightarrow $ $ 2b=a+c $ So, $ \frac{{{(a-c)}^{2}}}{(b^{2}-ac)}=\frac{{{(a-c)}^{2}}}{{ {{( \frac{a+c}{2} )}^{2}}-ac }} $ $ =\frac{{{(a-c)}^{2}}4}{[a^{2}+c^{2}+2ac-4ac]}=\frac{4{{(a-c)}^{2}}}{{{(a-c)}^{2}}}=4 $ . Trick: Put $ a=1,\ b=2,\ c=3 $ , then the required value is $ \frac{4}{1}=4 $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index