Sequence And Series Question 494

Question: A series whose nth term is $ ( \frac{n}{x} )+y, $ the sum of r terms will be

[UPSEAT 1999]

Options:

A) $ { \frac{r(r+1)}{2x} }+ry $

B) $ { \frac{r(r-1)}{2x} } $

C) $ { \frac{r(r-1)}{2x} }-ry $

D) $ { \frac{r(r+1)}{2y} }-rx $

Show Answer

Answer:

Correct Answer: A

Solution:

On putting $ n=1,2,3,….. $ First term of the series $ a=\frac{1}{x}+y $ , Second term = $ \frac{2}{x}+y $ \ $ d=( \frac{2}{x}+y )-( \frac{1}{x}+y )=\frac{1}{x} $ Sum of $ r $ terms of the series $ =\frac{r}{2}[ 2( \frac{1}{x}+y )+(r-1)\frac{1}{x} ] $ $ =\frac{r}{2}[ \frac{2}{x}+2y+\frac{r}{x}-\frac{1}{x} ] $ $ =\frac{r^{2}-r+2r}{2x}+ry=[ \frac{r,(r+1)}{2x}+ry ] $ .