Sequence And Series Question 5

Question: If $ p,\ q,\ r $ are in A.P. and are positive, the roots of the quadratic equation $ px^{2}+qx+r=0 $ are all real for

[IIT 1995]

Options:

A) $ | ,\frac{r}{p}-7\ |\ \ge 4\sqrt{3} $

B) $ | \ \frac{p}{r}-7\ |\ <4\sqrt{3} $

C) All $ p $ and $ r $

D) No $ p $ and $ r $

Show Answer

Answer:

Correct Answer: A

Solution:

$ p,\ q,\ r $ are positive and are in A.P.
$ \therefore \ q=\frac{p+r}{2} $ ……(i) $ \because $ The roots of $ px^{2}+qx+r=0 $ are real
$ \Rightarrow $ $ q^{2}\ge 4pr $
$ \Rightarrow $ $ {{[ \frac{p+r}{2} ]}^{2}}\ge 4pr $ [using (i)]
$ \Rightarrow $ $ p^{2}+r^{2}-14pr\ge 0 $
$ \Rightarrow $ $ {{( \frac{r}{p} )}^{2}}-14( \frac{r}{p} )+1\ge 0 $ $ (\because \ p>0\ and\ p\ne 0) $
$ \Rightarrow $ $ {{( \frac{r}{p}-7 )}^{2}}-48\ge 0 $
$ \Rightarrow $ $ {{( \frac{r}{p}-7 )}^{2}}-{{(4\sqrt{3})}^{2}}\ge 0 $
$ \Rightarrow $ $ | \ \frac{r}{p}-7\ |\ \ge 4\sqrt{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें