Sequence And Series Question 50

Question: If $ b=a-\frac{a^{2}}{2}+\frac{a^{3}}{3}-\frac{a^{4}}{4}+.. $ then $ b+\frac{b^{2}}{2,!}+\frac{b^{3}}{3,!}+\frac{b^{4}}{4,!}+…\infty = $

Options:

A) $ {\log_{e}}a $

B) $ {\log_{e}}b $

C) $ a $

D) $ e^{a} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ b={\log_{e}}(1+a)\Rightarrow 1+a=e^{b} $
$ \Rightarrow ,1+a=1+\frac{b}{1!}+\frac{b^{2}}{2!}+…. $ Þ $ a=b+\frac{b^{2}}{2,!}+….. $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index