Sequence And Series Question 51

Question: $ \frac{1}{1,.,2}-\frac{1}{2,.,3}+\frac{1}{3,.,4}-\frac{1}{4,.,5}+…..\infty = $

[Roorkee 1992; AIEEE 2003]

Options:

A) $ {\log_{e}}\frac{4}{e} $

B) $ {\log_{e}}\frac{e}{4} $

C) $ {\log_{e}}4 $

D) $ {\log_{e}}2 $

Show Answer

Answer:

Correct Answer: A

Solution:

We know that, $ {\log_{e}}2=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+….. $ …..(i) (when $ x=1 $ in $ {\log_{e}}(1+x) $ ) Also, $ {\log_{e}}2=1-( \frac{1}{2.3} )-( \frac{1}{4.5} )-( \frac{1}{6.7} )-……. $ …..(ii) (when $ x=-1 $ in $ {\log_{e}}(1-x) $ ) By adding (i) and (ii), we get $ 2{\log_{e}}2=1+( \frac{1}{1.2}-\frac{1}{2.3} )+( \frac{1}{3.4}-\frac{1}{4.5} )+…… $
$ \Rightarrow 2{\log_2}2-1=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+…….. $
$ \Rightarrow \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+…….. $ $ ={\log_{e}}4-{\log_{e}}e={\log_{e}}( \frac{4}{e} ) $ .