Sequence And Series Question 526
Question: If $ A $ be a arithmetic mean between two numbers and $ S $ be the sum of $ n $ arithmetic means between the same numbers, then
Options:
A) $ S=n,A $
B) $ A=n,S $
C) $ A=S $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
Let the two quantities be  $ a $  and  $ b $  and let  $ A_1,\ A_2…….,A_{n} $  be the  $ n $  A.M.’s between them. Then  $ a,\ A_1,\ A_2……A_{n},\ b $  are in A.P. and let  $ d $  be the common difference. Now  $ {T_{n+2}}=b=a+(n+2-1)d\Rightarrow d=\frac{b-a}{n+1} $  Also  $ A_1+A_2+……+A_{n}={S_{n+1}}-a $   $ =\frac{1}{2}(n+1)[ 2a+(n+1-1)\frac{(b-a)}{(n+1)} ]-a $  = $ \frac{n}{2}[2a+(b-a)]=\frac{n}{2}(a+b)=n( \frac{a+b}{2} )=nA $ . Trick: Let 1, 3, 5, 7, 9 is in A.P. In this series   $ A=5,n=3,S=15 $
Þ  $ S=nA $ .
 BETA
  BETA 
             
             
           
           
           
          