Sequence And Series Question 532

Question: $ n^{th} $ term of the series $ \frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+…… $ will be

[Pb. CET 2000]

Options:

A) $ n^{2}+2n+1 $

B) $ \frac{n^{2}+2n+1}{8} $

C) $ \frac{n^{2}+2n+1}{4} $

D) $ \frac{n^{2}-2n+1}{4} $

Show Answer

Answer:

Correct Answer: C

Solution:

Obviously $ T_{n}=\frac{1^{3}+2^{3}+3^{3}+………+n^{3}}{1+3+5+………upto\ n\ terms} $ = $ \frac{\Sigma n^{3}}{\frac{n}{2}[2+(n-1)2]}=\frac{1}{4}\frac{n^{2}{{(n+1)}^{2}}}{n^{2}}=\frac{1}{4}(n^{2}+2n+1) $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index