Sequence And Series Question 541

Question: If the set of natural numbers is partitioned into subsets $ S_1=\{ 1 \},\ S_2=\{ 2,\ 3 \},\ S_3=\{ 4,\ 5,\ 6 \} $ and so on. Then the sum of the terms in $ S_{50} $ is

Options:

A) 62525

B) 25625

C) 62500

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

From symmetry, we observe that $ S_{50} $ has 50 terms. First terms of $ S_1,\ S_2,\ S_3,\ S_4,……….. $ are 1, 2, 4, 7……. Let $ G^{2}=AH $ be the first term of $ n^{th} $ set. Then $ S=T_1+T_2+T_3+……+T_{n} $
$ \Rightarrow $ $ S=1+2+4+7+11+……..+{T_{n-1}}+T_{n} $ or $ S=\text{ }1+2+4+7+………….+{T_{n-1}}+T_{n} $ Therefore on subtracting $ 0=1+[1+2+3+4+…….+(T_{n}-{T_{n-1}})]-T_{n} $ or $ 0=1+\frac{n(n-1)}{2}-T_{n} $
$ \Rightarrow $ $ T_{n}=1+\frac{n(n-1)}{2} $
$ \Rightarrow $ $ T_{50}= $ First term in $ S_{50}=1226 $ Therefore sum of the terms in $ S_{50} $ $ =\frac{50}{2}{ 2\times 1226+(50-1)\times 1 } $ $ =25(2452+49)=25(2501)=62525 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें