Sequence And Series Question 542

Question: If $ \log 2,\ \log (2^{n}-1) $ and $ \log (2^{n}+3) $ are in A.P., then n =

[MP PET 1998; Karnataka CET 2000; Pb. CET 2001]

Options:

A) 5/2

B) $ {\log_2}5 $

C) $ {\log_3}5 $

D) 3/2

Show Answer

Answer:

Correct Answer: B

Solution:

As, $ \log 2,\ \log (2^{n}-1) $ and $ \log (2^{n}+3) $ are in A.P. Therefore, $ 2\log (2^{n}-1)=\log 2+\log (2^{n}+3) $
$ \Rightarrow (2^{n}-5)(2^{n}+1)=0 $ As $ 2^{n} $ cannot be negative, hence $ 2^{n}-5=0 $
$ \Rightarrow 2^{n}=5 $ or $ n={\log_2}5 $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index