Sequence And Series Question 545

Question: If $ y=x-x^{2}+x^{3}-x^{4}+……\infty $ , then value of x will be

[MNR 1975; RPET 1988; MP PET 2002]

Options:

A) $ y+\frac{1}{y} $

B) $ \frac{y}{1+y} $

C) $ y-\frac{1}{y} $

D) $ \frac{y}{1-y} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=x-x^{2}+x^{3}-x^{4}+……..\infty $ then $ xy=x^{2}-x^{3}+x^{4}-……\infty $ Adding, $ y+xy=x+0+0……+0 $
$ \Rightarrow $ $ x-xy=y\Rightarrow x(1-y)=y\Rightarrow x=\frac{y}{1-y} $ . Aliter: $ y=\frac{x}{1-(-x)}\Rightarrow y=\frac{x}{1+x} $
$ \Rightarrow $ $ y+yx=x\Rightarrow x=\frac{y}{1-y} $ .