Sequence And Series Question 549

Question: The sum of the series $ \frac{1^{2}}{1\cdot 2,!}+\frac{1^{2}+2^{2}}{2\cdot 3,!}+\frac{1^{2}+2^{2}+3^{2}}{3\cdot 4,!}+..+\frac{1^{2}+2^{2}+…+n^{2}}{n\cdot (n+1),!}+…\infty $ equals

[AMU 2002]

Options:

A) $ e^{2} $

B) $ \frac{1}{2}{{(e+{e^{-1}})}^{2}} $

C) $ \frac{3e-1}{6} $

D) $ \frac{4e+1}{6} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ T_{n}=\frac{n(n+1)(2n+1)}{6n(n+1)!} $
$ \therefore S=\frac{1}{6}\sum{[ \frac{2n+1}{(n)!} ]} $ = $ \frac{1}{6}\sum{[ 2.\frac{1}{(n-1)!}+\frac{1}{(n)!} ]} $ = $ \frac{1}{6}[2.e+e-1]=\frac{1}{6}[3e-1] $ .