Sequence And Series Question 551

Question: $ \frac{1}{3}+\frac{1}{2,.,3^{2}}+\frac{1}{3,.,3^{3}}+\frac{1}{4,.,3^{4}}+…..\infty = $

[MNR 1975]

Options:

A) $ {\log_{e}}2-{\log_{e}}3 $

B) $ {\log_{e}}3-{\log_{e}}2 $

C) $ {\log_{e}}6 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{1}{3}+\frac{1}{{{2.3}^{2}}}+\frac{1}{{{3.3}^{3}}}+\frac{1}{{{4.3}^{4}}}+……\infty $ $ =( \frac{1}{3} )+\frac{{{(1/3)}^{2}}}{2}+\frac{{{(1/3)}^{3}}}{3}+\frac{{{(1/3)}^{4}}}{4}+……\infty $ $ =-{\log_{e}}( 1-\frac{1}{3} )=-{\log_{e}}( \frac{2}{3} )={\log_{e}}( \frac{3}{2} ) $ $ ={\log_{e}}3-{\log_{e}}2 $ .